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Music and Language in
the Brain
Balancing Domain-Specific and Domain-General Mechanisms

Stephen C. Van Hedger and Urvi Maheshwari

17.1 Introduction

Music is the universal language of mankind

Henry Wadsworth Longfellow

Over the years, the relationship between music and language has been
explored by philosophers, poets, musicians, evolutionary biologists, and, most
pertinently for the present chapter, cognitive neuroscientists. A common
theme emerging from these comparisons is that music and language share
remarkable similarities, with music perhaps even representing a kind of uni-
versal language (a sentiment captured by the opening quotes to this chapter).
Indeed, the observable links between music and language are hard to ignore.

Music and spoken language both make use of complex sound patterns that
unfold over time. Both systems are shaped by culture (Cross, 2001), are
human activities present in every known culture (McDermott & Hauser,
2005; Mehr et al., 2019), are learned over the course of development
(McMullen & Saffran, 2004), and convey meaning to listeners (Slevc &
Patel, 2011). Archaeological evidence of bone flutes dating back 50,000 years
(Higham et al., 2012; Turk et al., 2020; though see Diedrich, 2015), suggests
that music making was an integral part of early cultural development. The
existence of music for tens of thousands of years has led some to theorize that
music and language were part of the same early communicative system,
making use of prosodic changes (i.e., patterns of intonation and stress) to
convey affective state (Brown, 2017; Mithen, 2005). Although the evolution-
ary function of music has been the subject of considerable debate (e.g.,
Honing et al., 2015; Pinker, 1999), the perspective offered by Brown (2017)
suggests that music and language share contemporary similarities because
both stem from a common communicative system.
Yet, reductionist comparisons of music and language highlight some of the

tenuous links that bridge both domains. For example, despite both music and

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009202336.024
Downloaded from https://www.cambridge.org/core. UCSD University of California San Diego, on 29 Dec 2025 at 03:10:05, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009202336.024
https://www.cambridge.org/core


spoken language consisting of structured sequences of sounds that convey
meaning to listeners, the syntactic organization and means of conveying
meaning differ considerably across domains. Differences between music and
language are perhaps most salient in the domain of semantics. Whereas
language can convey concrete, referential meaning through (mostly) arbitrary
patterns of sound (e.g., “The tired professor grades the term papers”), music
cannot convey a similarly specific referential meaning, even though it might be
able to represent a subjective psychological state of the tired professor some-
what adeptly (e.g., via slow, quiet, repetitive sound patterns). This example
represents a rather extreme difference in how music and language operate, but
it highlights the need for researchers exploring music-language links to con-
sider appropriate levels of analysis to make fruitful cross-domain comparisons
(cf. Asano & Boeckx, 2015). This is critical to gaining traction on the question
of how distinct or overlapping neural representations of these systems are.
Moreover, understanding the relative distinctiveness of both systems has
broader implications. For example, it provides insight into whether speech is
a special cognitive ability, or whether it might be explained under a broader
auditory framework that includes music (Peretz & Hyde, 2003; Pinker &
Jackendoff, 2005).
In the present chapter, we compare music and language from a cognitive

neuroscience lens. We begin by highlighting the apparent similarities in how
these domains are organized (Section 17.2), in terms of acoustic (Section
17.2.1), syntactic (Section 17.2.2), semantic (Section 17.2.3) features.
However, throughout this discussion, we highlight common pitfalls within
this area of research, which involve attempts to apply the lens of one domain
too myopically to the other domain. We then turn away from the specific
features of both music and language to examine broader cognitive mechanisms
involved in acquiring and maintaining these systems of knowledge (Section
17.3). We focus on the developmental constraints in learning music and
language (Section 17.3.1), the role of implicit learning mechanisms in pattern
extraction across domains (Section 17.3.2), and the conditions under which
training in one domain generalizes to the other domain (Section 17.3.3).
We conclude (Section 17.4) by summarizing the current state of the scientific
literature and commenting on how the comparison of music and language
lends insight into fundamental questions within cognitive neuroscience.

17.2 Featural Similarities between Music and Language

The featural similarities between music and language have become the subject
of considerable research in psychology and cognitive neuroscience.
Understanding the featural elements of both music and language is a necessary
step in assessing the degree to which these domains have distinct or shared
processing in the brain. In this section, we deconstruct these featural similar-
ities across music and language, from a description of the sound patterns that
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comprise both systems (Section 17.2.1), to the ways in which sounds are
organized hierarchically (Section 17.2.2), and how these organized sound
patterns convey meaning to listeners (Section 17.2.3).

17.2.1 Acoustic Features of Music and Language
Both music and spoken language are acoustic signals that unfold over time.
Music and speech signals interact with the same auditory organs and are not
inherently differentiated at the level of the cochlear partition. Yet, music and
speech are (generally) not confusable signals to most listeners, despite
following the same sensory pathway and aggregating as a single waveform if
heard simultaneously. How, then, do listeners clearly separate these signals to
appreciate both as separable auditory objects?
Although a comprehensive description of the acoustic similarities and dif-

ferences between music and speech is beyond the scope of this chapter, both
spectral (related to the frequency components of sounds) and temporal
(related to how sounds unfold over time) factors differentiate music from
speech. Music typically contains discrete (stable) pitches and isochronous
rhythmic patterns that allow for the extraction of a “beat” (e.g., Patel, 2003).
By contrast, speech typically contains larger, more continuous pitch changes
and rhythmic patterns that are not as strongly periodic (Peelle & Davis, 2012;
Zatorre & Baum, 2012). Music and speech also differ in their reliance on fine-
grained (spectral) information versus temporal (amplitude envelope) infor-
mation (Smith et al., 2002). These findings can be contextualized by consider-
ing the demands of music and speech comprehension. In speech, temporal
differences on the order of tens of milliseconds can entirely change the
meaning of the signal – for example, in differentiating stop consonants like /
ba/ and /pa/ (e.g., Miller & Volaitis, 1989). Music unfolds more slowly (Ding
et al., 2017) and places greater demands on spectral resolution. For example,
most listeners can readily detect when elements of a musical performance are
“out of tune” relative to one another, even when these differences are under
one semitone, corresponding to about a 5.95 percent change in frequency
(Larrouy-Maestri et al., 2019). By contrast, pitch changes in spoken language
are on the order of half an octave (i.e., 50 percent changes in pitch), with
precise tuning or intervallic information not playing a critical role in under-
standing (Patel, Peretz, et al., 1998)
These acoustic differences between music and speech might partly underlie

the observed differences in brain lateralization across domains. Although
music and speech are not well differentiated early in the auditory pathway,
including in the primary auditory cortex where tonotopic organization is
largely preserved (e.g., Humphries et al., 2010; Zatorre et al., 1992), a consist-
ent finding over decades of neuroimaging research has found that language
processing tends to be left lateralized, whereas music processing tends to be
right lateralized (Tervaniemi & Hugdahl, 2003). Given that the left hemi-
sphere has been found to be more temporally sensitive (extracting information
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over short timescales), whereas the right hemisphere has been found to be
more spectrally sensitive (extracting information over longer timescales), the
lateralization of music and speech may in part be due to acoustic differences
(Zatorre et al., 2002).
One approach trying to examine the extent to which observed neural

differences between music and speech might be acoustically driven focuses
on how song, relative to non-sung speech, is represented in the brain (e.g.,
Norman-Haignere et al., 2015). Although this approach reduces the spectro-
temporal richness that characterizes music to a single instrument (the voice),
it addresses the role of acoustic features in differentiating music and speech
representations, as both signals are produced by the same source. To highlight
the leverage gained by using song to assess acoustic differences in speech and
music processing, Albouy and colleagues (2020) played participants a cappella
songs (with lyrics) using a functional magnetic resonance imaging (fMRI)
paradigm. When songs were degraded in the temporal domain, speech per-
ception was impaired, yet music perception was preserved; and when songs
were degraded in the spectral domain, music perception was impaired, and
speech perception was preserved. Critically, the processing of these degraded
sounds in terms of song or speech was highly lateralized: the neural decoding
of speech was dependent on activity patterns in the left auditory cortex, and
the neural decoding of music was dependent on activity patterns in the right
auditory cortex. By degrading the same sounds to selectively impair speech
and music perception, the researchers provide strong evidence that the hemi-
spheric asymmetry found between speech and music can be explained by
specialization of left and right auditory cortex for temporal and spectral
analysis, respectively.
Given that both song and speech make use of the same vocal and articulatory

mechanisms, this opens the possibility that these signals might not be clearly
differentiable at an acoustic level. For example, the “speech-to-song” illusion is
an effect where an acoustic signal, clearly heard as speech initially, transforms
to song as a function of repetition (Deutsch et al., 2008). This illusion provides
a promising window for distinguishing acoustic factors from music and speech
representations in the brain, as the same acoustic stimulus can serve as both
speech and music. A significant amount of research has been conducted to
examine the acoustic factors that make some speech segments more likely to
transform into song points to acoustic factors, such as the pitch salience and
pitch stability of the utterance, as well as the extent to which repetition leads to
perceptual grouping of sounds that accentuates metrical information, (e.g.,
stressed and unstressed beats; Falk et al., 2014). This work examining speech
and song has found that speech – given its greater variability in terms of pitch
changes and rhythmic variation – sometimes appears to incidentally contain
sufficient pitch stability and sufficient metrical patterns to transform to song,
blurring the distinction between music and speech at an acoustic level.
The speech-to-song illusion thus offers a valuable window into the neural

processing of both music and spoken language, as it allows for the
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manipulation of domain (music versus speech) while controlling for acoustic
factors. Using fMRI, Tierney and colleagues (2013) played participants
excerpts from an audiobook. Some of these excerpts transformed into songs
when repeated (i.e., the speech-to-song illusion), whereas others did not
(control stimuli). This design allowed the researchers to examine the changes
in blood-oxygenation-level-dependent (BOLD) responses in the brain as a
function of hearing acoustically similar stimuli as either speech or song. The
authors found several additional areas that increased in BOLD activation in
response to hearing song (versus speech), including areas implicated in pitch
processing (e.g., anterior and posterior superior temporal gyrus), and areas
implicated in audio-motor integration (e.g., supramarginal gyrus and inferior
frontal gyrus). The authors conclude that these differences in “song” versus
“speech” stimuli are unlikely to be the result of acoustic factors, but rather
reflect the increased demands that song perception places on pitch processing
and motor processing. Interestingly, the findings from this study were entirely
asymmetrical – perception of song led to increased BOLD responses in
multiple pitch- and motor-sensitive areas, but the control stimuli that did
not transform did not lead to increased BOLD responses in any area. These
findings suggest that perceiving a stimulus as music might place greater
processing demands in a myriad of brain areas, which has been proposed as
one of the ways in which musical training might lead to benefits in speech
processing (e.g., see Patel, 2011 and also Section 17.3.3).
Music and spoken language are quite similar at an acoustic level. Both

contain complex harmonic information, a perceptible fundamental frequency,
and periodic and quasi-periodic rhythmic patterns as they unfold over time.
Yet, musical sounds tend to have more stable pitches and more regular
rhythms that allow for the perception of a metrical beat. In earlier parts of
the auditory pathway (including the earliest cortical processing of sounds in
the primary auditory cortex), music and speech are not clearly distinguishable.
However, methodological advances and clever experimental paradigms (e.g.,
using the speech-to-song illusion) have demonstrated differentiation of music
and speech signals in areas implicated in pitch and motor processing. The
existence of speech selective and music selective areas of the brain, even when
controlling for acoustic factors, suggests that these systems have domain-
specific representations, even if they share substantial overlap in earlier audi-
tory processing areas.

17.2.2 Syntactic Features of Music and Language
The acoustic signatures of both music and language are not static, but rather
unfold over time. An important consideration when comparing how music
and language are represented in the brain is to examine the ways in which
these sounds are structured. Both music and language are governed by rules
that constrain how smaller units (e.g., notes, words) are combined into larger
structural units or sequences (e.g., phrases, sentences). Both music and
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language have syntax, broadly defined as the set of rules that dictate how
discrete elements of a system are combined hierarchically into larger units or
sequences (e.g., Adger, 2015).
Even though both language and music are governed by syntactic rules, a

pitfall in this area of research is to examine these relationships using a myopic
lens (e.g., see Asano & Boeckx, 2015 for a similar argument). Although music
and language have a hierarchical structure, trying to identify surface-level
parallels across domains is problematic for several reasons (Lerdahl, 2013).
First, hierarchical organization can occur at multiple levels of analysis within
each domain (e.g., the phonological, morphological, and sentential level in
language; the harmonic and rhythmic levels in music), and it is unclear how
the “units” of each domain should be compared. Second, syntax is intricately
tied to meaning, particularly within music (Asano & Boeckx, 2015). For
example, harmonic syntax (the rules governing how tonal sequences unfold
over time) generates strong expectations in listeners, and violating these
expectations is one of the ways in which music can represent affective mean-
ing (e.g., Steinbeis et al., 2006). Similarly, in language, syntax is used to
determine and convey meaning, perhaps most saliently in a process called
syntactic bootstrapping. On these accounts, language learners might acquire
semantic knowledge (e.g., verb meanings) from syntactic knowledge, such as
using grammatical cues (e.g., tense markings, morphology) and discourse
structure (Brown, 1957; Gleitman, 1990; Jakobson, 1965; Landau &
Gleitman, 2009; Naigles, 1990; Naigles & Swensen, 2007) to narrow their
hypothesis space about the meanings of words. Given the radically different
ways in which music and language convey meaning (see Section 17.2.3), this
intertwining of syntax and semantics complicates direct and literal compari-
sons of musical and linguistic syntax. Consequently, much of the research
examining syntactic relationships between music and language focuses on the
processing of syntax in both domains, rather than on literal translations
between musical and linguistic syntactic units.
How is syntax processed in the brain? In language, syntactic processing has

been dissociated from semantic processing using a variety of methodologies,
including electroencephalography (EEG; Neville et al., 1991) and fMRI
(Friederici, 2003). Early neuroimaging work in this area found evidence for
the involvement of “Broca’s Area” in the processing of syntax in language
(Embick et al., 2000). However, the specific role of Broca’s Area in the
context of the classic Broca–Wernicke–Lichtheim–Geschwind model of
language (e.g., Geschwind, 1970) has been more recently reexamined, in
part because it is not clearly marked anatomically (Tremblay & Dick, 2016)
and appears to dynamically change functionality depending on coactivation
of other related networks (Hagoort, 2014). As such, it is more appropriate to
characterize syntax processing as being subserved by a broader network than
Broca’s Area, with the left inferior frontal gyrus and anterior superior tem-
poral gyrus critically implicated in syntactic processing (Grodzinsky &
Friederici, 2006).
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Intriguingly, musical syntax has been argued to have substantial shared
processing overlap with linguistic syntax (Patel, 2003). Converging evidence
from several neuroscientific methodologies, including EEG (Patel, Gibson,
et al., 1998), magnetoencephalography (MEG; Maess et al., 2001), and fMRI
(e.g., Tillmann et al., 2003) highlight the similarities in both the time course of
processing musical and linguistic syntax, as well as the presumed activated
networks (including the inferior frontal gyri and “Broca’s Area”). These
findings have been incorporated into the shared syntactic integration resource
hypothesis (SSIRH; Patel, 2003), which posits that the online processing of
both music and language syntax draws upon a common syntactic processor in
the brain. Although the SSIRH might initially appear to be at odds with
double dissociations found between music and language – specifically, amusia
without aphasia (Peretz et al., 1994) and aphasia without amusia (Luria et al.,
1965), the hypothesis states that both domains are representationally distinct
(i.e., have domain-specificity), and only draw upon common processing
resources when integrating elements into larger syntactic structures.
One prediction that stems from the SSIRH is that syntactic processing

demands in music should interfere with processing demands in language (or
vice versa) – a finding that has been supported in the literature (e.g.,
Fedorenko et al., 2009; Slevc et al., 2009). Neuroimaging (fMRI) investiga-
tions of these interference effects have found that the processing of musical
and linguistic syntax results in interactive effects in the left inferior frontal
gyrus – consistent with the SSIRH and the view that the left inferior frontal
gyrus is critically involved in the online processing of syntax, regardless of
domain (Kunert et al., 2015). In further support of the SSIRH, individuals with
Broca’s aphasia were found to exhibit syntactic processing difficulties for
music, with these difficulties not easily attributable to low-level deficits in
pitch perception or short-term memory (Patel et al., 2008).
The SSIRH has received considerable support from converging methodolo-

gies. However, the primary challengers to this hypothesis have questioned
whether the behavioral and neuroscientific results are most parsimoniously
explained under a “syntactic processor” framework, as opposed to a more
general cognitive framework invoking attentional and memory processes. This
has been shown using “garden path” sentences (i.e., sentences that are gram-
matically correct, but bias an individual toward the wrong interpretation and
thus require online reevaluation and reanalysis). Work supporting the SSIRH
found that syntactic garden path sentences (e.g., “The old man the boat”)
interfere with the processing of musical syntax (Slevc et al., 2009). However,
follow-up work found that this interference is not specific to syntactic pro-
cessing, as semantic garden path sentences (e.g., “The old man went to the
bank to withdraw the net”) result in the same patterns of interference on
musical syntax (Perruchet & Poulin-Charronnat, 2013). These results suggest
that it is the nature of garden path sentences – which broadly place demands
on attention and working memory to reevaluate and correctly interpret –
rather than syntactic processing demands specifically, that might be most
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parsimoniously explaining shared processing between musical and linguistic
structure. This challenge to the SSIRH can be integrated into a broader
research literature suggesting that Broca’s Area might be better explained in
terms of broader (working) memory processes in sequence understanding
(Fiebach et al., 2005; Stromswold et al., 1996). In addition, musical syntax
has also been explained in terms of auditory short-term memory processes
(Bigand et al., 2014). These findings do not challenge the empirical findings
used in support of the SSIRH; rather, they suggest that an alternative explan-
ation of the results might involve broader auditory memory and attentional
processes over specific syntactic processing.
The relationship between musical and linguistic syntax is thus complex and

actively debated. At first glance, the similarities between the two domains
appear numerous (e.g., both involve the sequencing of smaller units into
hierarchical structures), which has undoubtedly contributed to the notion of
music as a kind of language. However, the presumed similarities between
musical and linguistic syntax depends on the level of analysis which one
applies to syntactic structures in both domains. The most promising approach
in this area of research has been to focus on the processing of syntactic
structures in both domains, rather than on deriving a common taxonomy for
describing syntactic units. To this end, the SSIRH has become a highly
influential framework for understanding syntactic processing in both music
and language. Although the SSIRH has been supported in many contexts,
using converging methodologies to show overlapping neural networks (e.g.,
inferior frontal gyrus) and behavioral interference effects in processing musical
and linguistic syntax, one outstanding question in this area of research is
whether these findings are best explained via broader auditory attention and
memory mechanisms.

17.2.3 Semantic Features of Music and Language
Both music and language are communicative systems that convey meaning to
listeners. As such, they can be considered under the framework of semantics
(e.g., Crystal, 1981). In this section, we first highlight the key differences in
how musical and linguistic meaning operate. We then turn to some promising
approaches to assess the extent to which semantic processing might overlap in
musical and linguistic domains.
Musical meaning is largely derived from its intramusical structure (e.g.,

Lerdahl & Jackendoff, 1983; Meyer, 1956; Narmour, 1990), which establishes
(and sometimes violates) listeners’ expectations in service of aesthetic or
emotional meaning (Steinbeis et al., 2006). Under this framework, musical
meaning is self-referential – that is, determined by musical structure, which
blurs the distinction between musical syntax and musical meaning (e.g., Asano
& Boeckx, 2015). Although music can certainly take on meaning beyond its
own internal structure (for example, externally associating the repeating two
note leitmotif from the “Jaws” soundtrack, composed by John Williams, with a
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shark or with an ominous event more broadly), these “extra-musical” associ-
ations have been treated as a more ancillary source of meaning compared to
meaning generated from the musical structure itself (Meyer, 1956).
In contrast, linguistic meaning is derived largely from its ability to symbol-

ically reference ideas outside of the internal structure of language.1

In describing the “design features” (key properties) of language, Hockett
(1958, 1960) describes how language is differentiated from other forms of
communication (e.g., nonhuman animal communication) and details several
elements of language that other forms of communication do not possess
(although see Wacewicz & Żywiczyński, 2015 for a modern critique; also see
Andrews, 2014, 2019 for a perspective from cognitive neuroscience).
Of particular importance for the present chapter is the design feature of
arbitrariness – that is, the referential units in language (e.g., spoken or written
forms of the word “dog”) are arbitrarily associated with the concept (in this
case, the concept of a furry, four-legged animal). The arbitrariness of language
is thought to be a critical feature of the generativity of linguistic meaning, as
well as expressing abstract concepts (e.g., liberty), as there could not be a
sound or symbol that would “naturally” map onto this construct (Lupyan &
Winter, 2018).
However, the notion of arbitrariness as a design feature of language has been

challenged for decades (e.g., see Bolinger, 1949; Jakobson, 1995). Specifically,
there exist contexts in which language-meaning mappings are iconic, in which
the symbol (e.g., the sound of a word) maps onto its referent in a nonarbitrary
manner. Examples of these nonarbitrary mapping include onomatopoeia (e.g.,
the words buzz or hiss mimic acoustic features of their referents), as well as
less obvious iconic relationships between words and their meanings, such as
the association between sl- sounds and negative properties, such as slime,
sludge, slum, and slur (Perniss et al., 2010). One of the most prominent
examples of nonarbitrary mappings in language is the “maluma/takete” effect
(also referred to as the “bouba/kiki” effect), in which sounds like “maluma” or
“bouba”map onto rounded shapes, whereas sounds like “takete” or “kiki”map
onto to spiky shapes (Köhler, 1929; Ramachandran & Hubbard, 2001). The
bouba/kiki effect replicates across cultures and writing systems (Ćwiek et al.,
2022). Moreover, this iconic mapping – also called sound symbolism (e.g.,
Nygaard et al., 2009) – occurs in real-world instances (i.e., is not limited to
pseudowords like “bouba” or “kiki”) (Sidhu et al., 2021), more frequently than
would be expected by chance, and facilitates word learning in children
(Monaghan et al., 2014).
These iconic mappings between linguistic sounds and their referents open

up the possibility that language and music might share more fundamental
ways of conveying meaning, especially given the case that spoken language
and music have a number of acoustic similarities (e.g., see Section 17.2.1). The
foundations for these sound symbolic mappings have been found in prelin-
guistic infants, which suggests that the foundation for this sound-meaning
mapping might be derived from broader statistical properties of the
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environment or even innate synesthetic correspondences (Imai & Kita, 2014;
Walker et al., 2010). Moreover, individuals have been shown to spontaneously
use this analog acoustic channel of expression, independent from the propos-
itional structure of language, to convey referential information about an
object. For example, individuals modulate their speaking rate to convey infor-
mation about an object’s speed and modulate their fundamental frequency to
convey information about an object’s vertical movement (Shintel et al., 2006).
Subsequent work demonstrated that underscoring of spoken sentences with
either accelerating or decelerating musical motifs influenced individuals’ per-
ceptual interpretations of the sentence content (e.g., picturing a galloping
horse if the music was accelerating and a resting horse if the music was
decelerating), suggesting that these nonarbitrary mappings interact across
domains, in a conceptually similar manner to the SSIRH but for semantic
processing (Hedger et al., 2013).
How might these nonarbitrary associations between sound and meaning in

both music and language be similarly represented in terms of neural activity?
In EEG paradigms, semantic violations have reliably elicited a specific ERP
component – the N400 – making this a promising methodology and biomar-
ker for addressing this question. The N400 is a negative peaking electrophysio
logical event peaking about 400 milliseconds after a stimulus onset and is
consistently implicated in semantic – but not syntactic – violations (Kutas &
Hillyard, 1980). For example, if one were presented with the written sentence
“She takes her coffee with cream and floor,” one word at a time, one would
expect an N400 ERP following the word “floor” as it represents a semantic
violation given the preceding context.
Subsequent research on the N400 has shown that it is elicited by semantic

violations that extend beyond language (see Kutas & Federmeier, 2011 for a
review), including the processing of pictures (Ganis et al., 1996), mathematical
symbols (Niedeggen & Rösler, 1999), and nonlinguistic environmental sounds
(Uddin et al., 2018). These findings, which associate the N400 with violations
of meaning more broadly, suggest that music might also exhibit N400
responses. Although early work in this area did not find any evidence that
violations in music elicited N400s, musical violations were marked by different
ERP signatures such as the P300 (Besson & Macar, 1987). Critically, however,
this work operationalized musical expectancy violations via intramusical vio-
lations (altering notes within a scale or melody), not meaning derived from
sound symbolic mappings.
Koelsch and colleagues (2004) tested whether music might elicit an N400 by

examining semantic processing in music more in line with the ideas of sound
symbolism. In this paradigm, individuals were presented with written words
(e.g., “wide”), which could be preceded by a related or an unrelated prime, in
either language or music. In language, the related prime was a spoken sen-
tence that was semantically related to the target word (e.g., “The gaze
wandered into the distance”), whereas the unrelated prime was a spoken
sentence incongruent with the target word (e.g., “The manacles allow only
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little movement”). In music, the related prime was an excerpt that was
selected to reference the target word through nonarbitrary acoustic-meaning
mappings (e.g., playing an excerpt from Opus 54 by Richard Strauss, which
depicts wideness through instrumental spacing set in open position), whereas
the unrelated prime was an excerpt incongruent with the target word (e.g.,
playing an excerpt from E-minor piece for accordion by Heikki Valpola, which
depicts narrowness through closely spaced chords). The critical questions of
this research were (1) does a musical prime result in an N400 if incongruent
with the subsequent word, and (2) if so, how do the electrophysiological
components of this ERP differ between linguistic and musical primes? The
results demonstrated that, in this capacity, music elicited an N400 and more-
over, the signature of the N400 (e.g., its latency, its magnitude) was statistic-
ally comparable to the N400 elicited by linguistic primes. The latter point is
particularly important given that N400 amplitudes can index the strength of
semantic priming and violation (Kutas & Federmeier, 2011). Although the
findings of Koelsch and colleagues (2004) are important in demonstrating that
music can convey sufficient specificity in referential meaning to elicit N400
responses, the findings should not be interpreted as evidence that music
represents meaning in the same manner as language (e.g., see Slevc & Patel,
2011). In other words, even if music conveys meaning through sound symbolic
mappings, this is inherently coarser in terms of communicative specificity
compared to language, which can make use of both sound symbolic and
arbitrary sound-to-meaning mappings.
Although sound symbolic mappings provide one means of comparing mean-

ing across language and music, paralinguistic (nonlexical) cues in speech
provide a particularly strong point of comparison across domains. In speech,
speakers manipulate prosody – the stress, timing, and intonation of speech –
to convey information to listeners. Prosody is often discussed in two realms:
affective (emotional) prosody, which conveys the emotional state of the
speaker (Pichon & Kell, 2013), and linguistic prosody, which provides struc-
tural disambiguation, such as differentiating a question from a statement
through pitch (Bolinger, 1983). Prosody is often described as the “music” of
speech (Cole, 2015), with affective prosody providing some of the clearest
links between meaning in music and language, given that both signals are
considered to convey emotional information.
One question that arises in comparing prosody and music is whether both

systems make use of similar acoustic manipulations to convey emotional state.
In other words, for a given emotional state (e.g., sadness), do the acoustic
signatures in speech and music resemble one another? Answering this question
is complicated by the fact that both music and language are culturally con-
strained; thus, the answer to the question may depend on how language and
music are being defined in a particular sociocultural context. The extent to
which emotional categories are universally represented or recognized across
musical and linguistic systems is actively debated (e.g., Fritz et al., 2009;
Paulmann & Uskul, 2014; Smit et al., 2022; see also Nettl, 1999 for an alternative
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account on the universality of meaning in music). Nevertheless, within a
Western music framework, research has addressed whether there might be
consistent acoustic cues that are used in both systems to convey emotion.
In Western music, “basic” emotions such as happiness and sadness have

been associated with consistent psychoacoustic properties. Happiness is often
represented in terms of major scale tonality, a relatively fast tempo, and
relatively loud dynamics, whereas sadness is often represented in terms of
minor scale tonality, a relatively slow tempo, and relatively soft dynamics (e.g.,
Juslin, 2000). In speech, these general acoustic properties also reflect happi-
ness and sadness in emotional prosody, possibly because these cues covary
with arousal (e.g., Curtis & Bharucha, 2010; Scherer, 1995), which has been
used to further bolster the conjecture that both music and language evolution-
arily stemmed from a protolinguistic, affective communicative system
(Mithen, 2005).
Associations between emotional prosody and music perception have also

been used to investigate and ultimately challenge the domain-specificity of
musical and linguistic representations. As mentioned previously, a double
dissociation between music and language has been reported (aphasia without
amusia and amusia without aphasia). Yet, given the substantial overlap in how
emotion is conveyed in both music and emotional prosody, it is possible that
individuals with amusia might show impairments in emotional prosody per-
ception, highlighting shared processing across domains. This was verified
empirically by Thompson and colleagues (2012). In their design, participants
with amusia were compared to control participants without amusia in terms of
decoding semantically neutral sentences (e.g., “The broom is in the closet and
the book is on the desk”) spoken with six different intended emotional
categories (happy, sad, tender, irritated, afraid, and no emotion). Although
the two groups performed comparably for the no-emotion condition, the
listeners with amusia were significantly impaired relative to the control group
in identifying the other emotion categories. These findings are consistent with
neuroimaging studies, which demonstrate substantial overlap in the process-
ing of emotion in speech and music (e.g., Escoffier et al., 2013), and suggest
that music and language convey emotional information via shared networks.
Comparing how music and language convey meaning is inextricably tied to

how meaning is defined in both systems. In language, the arbitrary association
between symbols and their referents allows for the composition of limitless
and novel meanings. In contrast, musical meaning is often determined through
intramusical structure, blurring the line between semantic and syntactic
representations. However, there are several promising means of comparing
meaning in both music and language. First, both music and language can
convey meaning using sound symbolic processes, with music showing com-
parable electrophysiological signatures of semantic violations as language
under these circumstances. Second, emotional prosody in language has clear
acoustic parallels to music, and both systems appear to convey emotional
meaning via similar psychoacoustic properties. These findings suggest that
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although semantic representations in music and language might be distinct
under many circumstances, the two systems exhibit overlap in processing
when meaning is inextricably tied to the properties of the sounds (i.e., when
sound-to-meaning mappings are nonarbitrary).

17.3 Development of Language and Music

A common theme throughout this chapter is that language and music both
draw on the auditory system in complex and sometimes overlapping ways.
However, the interaction between these domains is not limited to featural
parallels along acoustic, syntactic, and semantic dimensions. Rather, the
cross-modal exchange between music and language is intertwined in develop-
ment across the lifespan, drawing on both domain-specific mechanisms and
domain-general developmental processes. In this section, we review the role of
critical periods in the development of music and language (Section 17.3.1), the
implicit mechanisms that underpin learning processes within these domains
(Section 17.3.2), and the ways in which training in one domain can influence
processing in the other domain (Sections 17.3.3 and 17.3.4). Throughout this
section, we highlight the ways in which auditory experience is shaped in the
brain and represented in the world through music and language.

17.3.1 Early Development: Critical Periods
The notion of a critical period for language acquisition – that is, a language is
acquired most naturally and accurately within a clearly defined developmental
window – is widely accepted (see Lenneberg, 1967; Penfield, 1965). The term
“critical period” is often used interchangeably with the term “sensitive period”
but conveys an important distinction: whereas critical period suggests that
windows of acquisition are sharply defined, sensitive period suggests that
humans experience gradual shifts in sensitivity to stimuli in their environment.
Here, we use the term critical period for consistency, but also suggest that
windows for language and music acquisition are flexible.
Several aspects of language are acquired within the first few months of life

(e.g., Johnson & Newport, 1989; Jusczyck & Bertoncini, 1988; Mehler et al.,
1988; see for review, Dahaene-Lambertz et al., 2008). In fact, the critical
period might even begin before birth since newborn infants show preference
for languages they hear in-utero (Mehler et al., 1988). Within the first few days
of birth, infants can discriminate between languages with different rhythmic
structure (Dehaene-Lambertz et al. 2006; Nazzi et al., 1998; Querleu et al.
1988), identify and categorize abstract phonemes (Dehaene-Lambertz & Pena,
2001), and by four months of age, even distinguish their native language from
rhythmically similar languages (Nazzi and Ramus, 2003). However, at around
four to six years old, children’s proficiency in detecting such differences
declines rapidly, plateauing around adulthood (Johnson & Newport, 1989,
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1991; Newport, 1990; see for review: Meisel, 2013). Although the specific
onset and offset times of the critical period for language acquisition continues
to be debated, one view is held consistent: proficiency in a given language is
strongly related to the age of exposure to that language (e.g., Newport, 1990;
Johnson & Newport, 1989, 1991; Oyama, 1976).
By contrast, evidence for a critical period for the acquisition of musical

abilities is less widespread. The strongest claims for a critical period in music
are grounded in the phenomenon of absolute pitch (AP), which is the ability
to name or produce a musical note without a reference (e.g., Deutsch, 2013).
Critical periods in AP are supported in principle by several converging find-
ings, including (1) associating the relative incidence of AP with the age at
which individuals began musical instruction (Bachem, 1955), (2) training
studies that demonstrate superior AP learning among children compared to
adults (Crozier, 1997), and (3) pharmacological interventions, suggested to
“reopen” critical periods in animal models, leading to enhanced AP learning
among adults (Gervain et al., 2013).
Another line of evidence to support critical periods in AP involves the

intersection of musical and linguistic processing. Specifically, one theory of
AP acquisition is that early experience attending to pitch in a linguistic
context (e.g., in the case of tonal languages, such as Mandarin, Cantonese,
and Vietnamese) facilitates the development of AP if musical lessons are
begun relatively early, when a presumed critical period is still open (Deutsch
et al., 2004). For example, Deutsch and colleagues (2006) compared AP
prevalence in two groups of first-year music conservatory students – those
who either spoke a tonal language (Mandarin) or a nontonal language
(English) – and found a greater prevalence of AP in Mandarin- compared
to English-speaking students. From these findings, it seems that we might
acquire aspects of music in the same way as learning a first language. In fact,
a global study conducted by Liu and colleagues (2023) involving upward of
30,000 adult native speakers across nineteen tonal languages and nearly half a
million native speakers of other, atonal languages found that tonal language
speakers were better at discriminating melodies, but worse at beat percep-
tion relative to atonal language speakers. The authors concluded that lin-
guistic experience might shape the perception of music. However, the notion
of critical periods in AP has been recently challenged by claims that some
adults can acquire AP with sufficient training (Van Hedger et al., 2019;
Wong et al., 2020). These findings parallel recent claims in language
research – for example, suggesting that developing a native-like accent in a
second language is possible under specific conditions beyond a critical
period (Dollmann et al., 2020). Overall, these findings may still be consistent
with a critical period framework, in which plasticity to acquire new skills is
higher within a specified period of development but may persist to some
degree across the lifespan (Newport, 2006).
Such parallels between language and music might prompt us to think of the

ways in which these domains draw on similar cognitive capacities and
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experiences early in development. Several aspects of language learning, includ-
ing accent development, language production, comprehension of morphology
and syntax, as well as processing speed and accuracy are facilitated within
critical periods during infancy and childhood. Some evidence for this comes
from second language learning. For example, Korean- and Chinese-speaking
adults make significant errors in grammatical judgments of English with age.
Moreover, age of exposure also impacts the way language is represented in the
brain. Additionally, ERP and fMRI studies show strong left hemisphere acti-
vation for their native language in bilingual adults (Dehaene et al., 1997;
Perani et al., 1996; Yetkin et al., 1996). When a second language is learned,
patterns of brain activation nearly overlap with those for the first or native
language. For late language learners however, neural organization is less
lateralized and more variable across individuals (Dehaene et al., 1997; Kim
et al., 1997; Yetkin et al., 1996). Several cross-linguistic studies show domain-
specific contrasts in first and second language learning (e.g., Neville et al.,
1997; Weber-Fox & Neville, 1996) providing evidence for a critical period for
acquiring phonological and grammatical patterns of language learning.
A closer look at the role of speech perception in language learning shows

that a language-specific pattern of listening accelerates language acquisition
over the first two-and-a-half years of life. This is evidenced by a phenomenon
of perceptual narrowing with increased exposure to the native, over other
languages between six and twelve months of age – the critical period for
phonetic learning (Oyama, 1976). Werker and Tees (1984) demonstrated this
phenomenon of perceptual narrowing in a study investigating infants’ ability
to discriminate English from other (i.e., Hindi and Salish) consonants.
English-speaking infants showed a reduced ability to discriminate between
Hindi and Salish consonant contrasts at twelve compared to six months of age,
even though native Hindi- and Salish-learning infants continued to effectively
discriminate between them. Subsequent evidence from behavioral and neuro-
logical studies supports the connection between speech perception and lan-
guage acquisition. Kuhl and colleagues (2005; 2006) used both behavioral and
ERP measures to show that infants’ ability to discriminate native versus non-
native speech at seven months of age differentially predicts later language
outcomes at two years of age: infants better at discriminating native speech
showed faster advancements in language acquisition. These results were later
extended to show discrimination between English and Spanish (Rivera-
Gaxiola et al., 2005, as well as Finnish and a non-native Russian contrast
(Silvén et al., 2014), among other languages.
Corresponding evidence of perceptual narrowing is also found in music, as

musical experience influences children’s perception of musical scales. Lynch
and colleagues (1990) tested the ability to notice mistunings in melodies based
on Western and non-Western (i.e., Javanese pelog) scales in English-speaking
infants and adults, finding that six-month-old infants were similarly able to
perceive Western and non-Western scales, whereas adults were better at
perceiving Western scales. Follow-up experiments conducted by Lynch and
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Eilers (1992) found that six-month-old infants were less perceptually accultur-
ated than one-year-olds, suggesting that young infants have an equipotentiality
for detecting differences between musical scales, but show a perceptual
narrowing with age.
Given these similarities in learning language and music during early child-

hood, it might be the case that increased overall auditory experience facilitates
perception. Under this view, perceptual narrowing observed during this critical
period for phonetic learning is malleable. One example of this malleability
comes from research examining infants’ ability to discriminate lexical tones,
that is, pitch patterns used to contrast word meaning in some languages. Infants
learning nontonal languages find it harder to discriminate lexical tones by nine
months of age than their tonal language learning counterparts (Mattock et al.,
2008; Mattock & Burnham, 2006), but these differences can be shifted through
additional auditory experience. For example, a study by Kuhl and colleagues
(2003) showed that nine-month-old English-learning infants’ ability to discrim-
inate speech contrasts in Mandarin increased after greater exposure to a
Mandarin speaker. English-learning infants exposed to Mandarin showed an
ability to discriminate speech contrasts on a par with Mandarin-learning infants.
Similar research using EEG measures also demonstrated neural sensitivity to
speech contrasts (Conboy and Kuhl, 2011; Lytle et al., 2018). An intervention
using music, rather than a tonal language, showed a similar shift in children’s
neural processing of non-native speech contrasts and musical rhythm (Zhao &
Kuhl, 2016, 2022). Zhao and colleagues (2022) explored whether music
intervention reversed the observed decline of early sensory encoding of non-
native speech with gains in native linguistic experience. Seven-to-ten-month-
old English-learning infants received a music intervention (i.e., increased audi-
tory experience) and their frequency-following response (FFR) to Mandarin
lexical tones was measured longitudinally. The no-intervention group showed a
marked decline in FFR pitch-tracking accuracy to Mandarin lexical tones,
whereas the music-intervention group showed no such decline. From these
findings, it seems that language and music both influence infants’ speech
encoding within a presumed critical period of development.

17.3.2 Domain-General Learning Mechanisms: Statistical Learning
Newborn infants receive various types of information from their physical and
social environments. To make sense of the world, these young learners must
keep track of different regularities in their environment and learn complex
rules that organize their environment, without prior knowledge about which
information is important. One way in which infants do this is through statis-
tical learning, a domain-general learning mechanism by which infants become
sensitive to different patterns in their environment implicitly, without external
feedback or reinforcement (Saffran et al., 1996; Saffran & Kirkham, 2018).
Initially, statistical learning was limited in scope, conceptualized solely as a

computational process of tracking syllable patterns to support segmentation
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(Saffran et al., 1996a, 1996b). However, subsequent research has shown that
statistical learning is domain-general, extending beyond speech to recognizing
regularities within other environmental inputs. Infants can detect statistical
patterns within streams of continuous speech by the time they are eight
months old.
Similar to speech, listeners are sensitive to musical input from their environ-

ments (McMullin & Saffran, 2004). Young learners discover higher-order
structures to organize individual units of language (e.g., words and syntax)
and music (e.g., melodic and harmonic sequences) in an implicit manner
(Fiser & Aslin, 2001; Tillmannet al., 2000). Not only can infants detect
regularities in speech, but they also can do the same for musical tones by
the time they are eight months old (Saffran et al., 1999). Eventually, listeners
can implicitly learn several musical features, including timbre and melodic
pitch relationships, from their listening environments (see Ettlinger et al.,
2011; Rohrmeier & Rebuschat, 2012). Under the statistical learning hypoth-
esis, the brain not only calculates and organizes the transitional probabilities
(TPs) of sequential phenomena (words, tones, etc.) from the environment,
but also updates this acquired statistical knowledge in line with new environ-
mental inputs through the lifespan (Daikoku et al., 2017). Differences in brain
responses as a result of statistical learning may then depend on the previously
acquired knowledge (e.g., Furl et al., 2011; Yumoto et al., 2005).
Evidence for experience and expectancy-related differences in statistical

learning can be found in both language and music. In language, continuous
speech has both universal regularities and language-specific statistical patterns.
For example, adjacent units (syllables) in language have a high transitional
probability of co-occurrence across languages (Saffran et al., 1996a, 1996b;
Swingley, 2005) that can be implicitly segmented are found across languages,
and therefore be leveraged by infant and adult language learners. By contrast,
linguistic properties like lexical stress are language-specific, and therefore, not
readily available for all language learners (e.g., Sohail & Johnson, 2016). Adult
learners might bootstrap language-specific patterns (lexical stress, phonotac-
tics, etc.) onto universal elements such as TPs to identify word boundaries in
continuous speech (e.g., Benitez & Saffran, 2021). For example, English-
speaking adults given brief, unguided exposure to a foreign language (Italian)
in the form of podcasts demonstrate initial word-form learning, compared to
adults with no exposure to the foreign language (Alexander et al., 2022), which
suggests that second-language learners might be sensitive to the characteristics
of different word features (TPs, phonetic patterns, etc.) of a novel language
after some exposure to that language. In music, some evidence of expectancy-
related learning comes from research conducted with musically trained indi-
viduals. For example, adult musicians perform better on statistical learning
tasks and are generally better at learning the implicit statistical structures of
sung language compared to nonmusicians (François and Schön, 2011, 2014;
Vasuki et al., 2016). In an ERP study, musicians showed a larger N1 familiarity
effect compared to their nonmusician counterparts, which suggested that they
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are better at recognizing statistical patterns. Moreover, ERPs recorded during
the familiarization of a sung language showed that the N400 learning curve
saturates earlier in musicians, which suggested that they are also faster at
detecting statistical regularities in sung language compared to their nonmusi-
cian counterparts (François and Schön, 2014). Similarly, a longitudinal study
conducted with eight-year-old children found that children learning music
were better at identifying statistical regularities in auditory streams compared
to children who were not formally trained in music (François et al., 2014).
Moreover, subsequent research by Vasuki and colleagues (2017) showed that
musically trained children were better at melody discrimination, rhythm dis-
crimination, frequency discrimination, in addition to auditory statistical learn-
ing, compared to their nontrained counterparts; and the triplet onset stimulus
used in their statistical learning paradigm elicited larger responses in musically
trained compared to untrained children.
Into adulthood, both language and music demonstrate effects of

entrenchment, wherein the efficacy of learning the statistical regularities of
novel language and music sequences depends on prior representations
developed within both domains. In language, variance in performance on a
novel statistical learning task could be partly explained by an individual’s
previous language background – specifically, the extent to which the novel
sequences aligned with the individual’s native language (Siegelman et al.,
2018). In music, tonal sequences that did not adhere to a conventional tuning
standard were judged to sound “correct” if they incidentally contained a
greater proportion of common intervals found in Western music (perfect
fourths and fifths), even though the presence of these intervals was not indica-
tive of the structure of the novel sequences (Van Hedger et al., 2022). These
parallels across language and music suggest that as listeners develop increas-
ingly rich representations in both domains, subsequent implicit learning effi-
cacy interacts with these previously developed representations.
Language and music both rely at least partially on statistical learning, a

domain-general mechanism for learning and processing novel information.
Learners might be using this mechanism for acquiring and maintaining prop-
erties of both language (Peretz et al., 2012; Romberg & Saffran, 2010; Saffran,
2001; Saffran, 2003) as well as music (Furl et al., 2011; Saffran, 2003; Saffran
et al., 1999). The literature on statistical learning shows us that language and
music are not simply parallel domains with surface level similarities, but
rather, draw on shared domain-general processes that shape auditory experi-
ence, with developed representations influencing the efficacy of statistical
learning into adulthood.

17.3.3 Training and Transfer between Domains
So far, we have suggested language and music are distinct modalities, com-
parable not just by surface-level features, but also related by a common
auditory sensory experience and maintained by shared cognitive learning
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mechanisms. We can now turn our attention to the ways in which the
modalities interact with each other in cross-modal exchange. One view holds
that the prevalence of higher-order structural similarities indicates that music
draws from language in unequal measure (Pinker, 1997) or perhaps, even that
language is a product of musical experience (Darwin, 2007/1874). Another
view challenges the idea that these domains are linked at a structural level
(e.g., Federenko, Behr, et al. 2011; Federenko, McDermott, et al., 2012).
While music and language have differentiable representations at the neural
level, overlap in the sensory and cognitive systems employed by these modal-
ities allows room for the possibility that experience and training in one domain
might facilitate performance in another domain.
Evidence for training and transfer effects from language to music come from

research conducted with linguistically and musically trained samples. In one
study, Bidelman and colleagues (2013) compared adult Cantonese-speaking
nonmusicians to English-speaking trained musicians and English-speaking
controls on pitch discrimination and pitch memory tasks. They found that
Cantonese-speaking participants outperformed English-speaking controls on
all aspects of pitch perception and discrimination. By contrast, Cantonese
speakers performed similarly to their English-speaking musically trained coun-
terparts, suggesting that pitch expertise, arising from either musical training or
tonal language experience, is associated with lower sensitivity to pitch dis-
crimination, higher tonal memory and melodic discrimination. Moreover, the
authors found a significant relationship between behavioral measures of pitch
ability and length of exposure to the tonal language or musical training.
In another study, Elmer and colleagues (2011) conducted an event-related
fMRI study to examine whether long-term language training facilitates the
discrimination of nonverbal stimulus attributes in a nonverbal auditory dis-
crimination task, and addressed whether functional transfer effects might
support behavioral performance by comparing professional simultaneous
interpreters to controls. Their results suggested that discrimination of target
stimuli was associated with differential BOLD responses in the frontoparietal
regions of the two groups, even though behavioral results showed no signifi-
cant effects. Language training seemed to modulate brain activity in regions
associated with top-down regulation of auditory functions, such as auditory
attention and categorization. These findings are in line with the idea that
overall auditory experience plays a crucial role in language processing.
Parallel evidence for music to language transfer comes from different levels

of processing: multiple studies have examined acoustic features (e.g.,
Chartrand & Belin, 2006; Bidelman & Krishnan, 2010; Weiss & Bidelman,
2015), cognitive factors (e.g., Anvari et al., 2002; Moreno et al., 2009), and
executive function (e.g., Bialystok & DePape, 2009). Moreover, the impact of
musical training on language acquisition and development has been explored
in the context of neural encoding of speech in noise (Strait et al., 2009; Strait
& Kraus, 2011), phonological awareness (e.g., Tsang & Conrad, 2011), as well
as vocabulary and reading comprehension (e.g., Corrigal & Trainor, 2011;
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Moreno, Bialystok et al., 2011). Musical training studies corresponding to the
ones discussed above reliably show that musical training facilitates linguistic
performance. For example, Magne and colleagues (2006) found that musically
trained children detected incongruities in music and language better than their
musically untrained counterparts. Musically trained children showed early
negative components in music and late positive components in language,
whereas no components were present in their untrained counterparts. These
results are in line with the finding that musically trained individuals show
enhanced neural encoding of speech sounds in the auditory brainstem com-
pared to their untrained counterparts (Kraus & Chanrasekaran, 2010).
Similar to language-to-music transfer, enhanced performance in language is

also correlated with length and degree of exposure to musical training (e.g.,
Besson et al., 2011; Musacchia et al., 2007; Strait et al., 2009). Although these
studies relied on expert populations, longitudinal training experiments have
yielded similar results. For example, Moreno and colleagues (2009, 2011a,
2011b) conducted a series of longitudinal studies to explore whether musical
training facilitated language processing in young children. Eight-year-old
children given musical training showed improvements in EEG correlates of
speech-related pitch processing after receiving six months of training, com-
pared to matched controls. Behaviorally, four-to-six-year-old children showed
similar enhancements in verbal intelligence after participating in an intensified
version of the musical training program conducted over twenty days (Moreno,
Bialystok et al., 2011). These findings illustrate that a degree of plasticity may
be acquired through exposure to auditory activities in the form of language
or music.

17.3.4 Mechanisms Underlying Transfer: Insights from
Cognitive Neuroscience

A central question emerging from examining the developmental learning trajec-
tories of music and language, including how training in one domain can transfer
to the other domain, is: what exactly is being learned? Understanding the
perceptual, cognitive, and neural processes by which the brain generalizes and
transfers information from one domain (e.g., music) to another (e.g., language)
requires us to conceptualize the two domains as relying on shared auditory and
attentional systems. Moreover, given recent evidence that lifelong musicianship
is associated with preserved white matter tract integrity in individuals, which
may promote healthy aging (Andrews et al., 2021), understanding the proposed
mechanisms of transfer has implications for designing interventions to improve
psychological and neurobiological health across the lifespan.
One explanation for the cross-modal interaction between language and

music comes from the OPERA hypothesis (Patel, 2011), which states that,
neural areas recruited in music and language overlap (O) when partaking in a
learning process that involves precision (P), emotional engagement (E),
repetition (R), and attentional focus (A). According to this theory, cross-
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modal transfer occurs because largely overlapping cortical and subcortical
brain regions are recruited when the acoustic features of speech and music
are encoded. Increased precision of neural processing through the compon-
ents of this model (i.e., emotional engagement, repetition, and attention)
make the acoustic information more salient to the listener. Cross-modal
transfer is possible when acoustic features of music or language are encoded
with a high degree of precision with increased exposure (e.g., tonal language)
and training (e.g., formal musical training). Training allows learners to give
their attention to the acoustic features of music and language, and this
enhanced attention in turn mediates the overlapping neural networks involved
in music and language processing.
Building on the OPERA hypothesis, Moreno and Bidelman (2014) proposed

a different model of cross-modal transfer. Under this view, the neural net-
works determining the transfer of auditory information across music and
language are affected by two dimensions. First, is a sensory-cognitive dimen-
sion that distinguishes low-level auditory-sensory information from high-level
domain-general processes that support language. Whereas some training
might lead to experience-dependent plasticity, other training might impact
cortical plasticity, leading to overarching changes in language processing and
executive function. A second dimension along which training and transfer
occurs is the near-far dimension. A near-transfer involves seeing the develop-
ment of more precise listening skills (relative pitch discrimination, improve-
ments in pattern detection, etc.) because of repeated exposure to auditory
patterns. By contrast, a far-transfer occurs when the music training benefits
auditory sensory encoding in speech production and language acquisition. The
benefit of musical training is not just a product of length and intensity of
training, but also the degree to which the training targets higher-order
cognitive skills.
Both these accounts shed some light on the ways in which underlying neural

and cognitive mechanisms underlying music and language might be facilitating
a cross-modal transfer between these domains. The developmental trajectory
of these cognitive domains, discussed in earlier parts of the chapter, also lends
insights into the possibilities and restraints on transfers between them (cf.
discussion of sensory periods: White et al., 2013). Some skills (AP, detecting
unfamiliar sounds, etc.) emerge early, and may be restricted by a developmen-
tal timeline. However, it also seems true that both abilities interact beyond
these critical periods, and might contribute to learning and development
(e.g., second language acquisition, musical pattern detection) within the other
domain.
A third account of transfer across domains is that training plays a relatively

small role, with preexisting differences accounting for most of the shared
variance in language and musical abilities (e.g., Swaminathan & Schellenberg,
2019; see also Figure 17.1). For example, Swaminathan and Schellenberg
(2020) found that speech abilities were positively correlated with musical
abilities and IQ among six-to-nine-year-old children; however, musical training
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was not a significant predictor of language abilities. Among adults, recent work
has reported cases of “musical sleepers” – individuals without formal musical
training who nevertheless demonstrate perceptual acuity and electrophysio
logical signatures of sound encoding (e.g., FFRs) that are comparable to individ-
uals with extensive musical training (Mankel & Bidelman, 2018). In line with the
preexisting difference account, research has also demonstrated that personality
factors (e.g., openness) are associated in both children and adults with the
likelihood of taking music lessons and persisting with training (Corrigall et al.,
2013). Although these findings do not inherently reject the notion that training in
one domainmay transfer to another domain, they strongly caution against the use
of quasi-experimental designs (e.g., comparing trained musicians to nonmusi-
cians) in making causal claims about the nature of training and transfer.
Through a discussion of (1) the developmental constraints on acquiring

music and language, (2) the domain-general learning mechanisms involved
in learning music and language, and (3) the mechanisms underlying cross-
modal transfer between music and language in this section, we suggest that
learning in these domains is both an implicit, bottom-up process that relies on
auditory-sensory input to engage overlapping neural networks, and an explicit,
top-down process that requires precise encoding of information to facilitate
cross-modal transfer between the two domains. To better understand the
underlying mechanisms that allow for training and transfer, longitudinal
studies with random assignment to condition are critical, given the reports

Auditory Aptitude
Perceive, remember, 
discriminate pitch and 

rhythm

Cognitive Abilities
Selective attention, 

working memory, higher-
order reasoning

Speech Perception Musical Training

Figure 17.1 Potential paths explaining observed associations between musical training and spoken
language perception.
Note: The width and shading of the arrows represent pathway strength, with thicker and darker
arrows representing stronger connections. The figure outlines two primary ways through which
musical training could be associated with speech perception. The first, non-causal path is due to
preexisting auditory and cognitive abilities (middle), which then influence an individual’s tendency to
continue with musical training and also relate to an individual’s spoken language abilities. The second,
causal path shows how musical training could improve both auditory and cognitive abilities, which
then in turn could improve speech perception.
Figure modified and expanded upon from Swaminathan and Schellenberg (2019).
Thaut, M. H., & Hodges, D. A. (Eds.). The Oxford Handbook of Music and the Brain. Reproduced with
permission of the Licensor through PLSclear.
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that preexisting auditory processing and personality factors tend to covary
with musical training.

17.4 Conclusion

Comparisons between music and language have been the focus of research in
psychology and neuroscience for several decades. Throughout this chapter, we
demonstrate how music and language overlap in terms of psychoacoustic
properties, recruit shared neural networks in processing syntactically organ-
ized sequences, and can use nonarbitrary cues to convey meaning. Given these
surface-level similarities between language and music, it seems tempting, and
even practical to think of the two domains as related and parallel domains.
However, applying too fine-grained a level of analysis, such as focusing solely
on featural cues, restricts the way we think about the interactions between
these domains. For example, language and music are organized hierarchically
at multiple levels of analysis, ranging from the phonological to morphological,
and sentential level in language, and from harmonic to rhythmic levels in
music. Seeing these solely as hierarchical processes limits us from comparing
the units (morphology, rhythm, etc.) in a meaningful way. Conversely, looking
for functional equivalence between the two domains might lend itself to
miscalibrating the true underlying purpose and function of these skills. For
example, meaning is conveyed differently in both music and language: it
differs not just in transparency, but also content. It is difficult to compare,
and therefore, can be dangerous to equate across modalities. Music and
language are not just parallel domains that share surface-level features and
should be treated and compared at an appropriate level of analysis.
Despite these pitfalls that inevitably arise from featural comparisons of music

and language, studying the cognitive and perceptual processes underlying these
domains can provide insight into the ways in which music and language
interact and draw on each other. Both modalities are maintained by domain-
general learning mechanisms, with similar constraints on developmental tra-
jectories of learning (e.g., critical periods) and shared neurocognitive systems
for supporting implicit learning via statistical regularities in the environment.
Moreover, training in one domain often leads to enhanced skills in the other
domain, showing evidence for a complex training and transfer mechanism.
Applying an appropriate level of analysis demonstrates that music and language
interact in sophisticated ways and can provide insight into shared (domain-
general) versus distinct (domain-specific) neural and cognitive mechanisms.

Notes

1 Several related accounts have proposed alternative and complementary sources

of linguistic meaning, such as sensorimotor systems (e.g., Gallese & Lakoff,
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2005), embodied perception and action (e.g., Gibbs, 2003), metaphoric images
and schemas (e.g., Glucksberg & Keysar, 1990; Murphy, 1996), as well as
nonreferential sources of musical meaning including embodiment (e.g., Cox,

2001), and culture (e.g., Shepard & Wicke, 1997). For the purposes of our
discussion, however, we are focusing on the similarities and differences in

language and music from the human ability to derive meaning by mapping
sounds to words and words to their referents (Section 17.2.1) and bootstrapping

our hypotheses about the meanings of words, sentences, and musical sequences
from syntax (Section 17.2.2).
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